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ABSTRACT 

 

In recent years, air gesture and in-air handwriting recognition have emerged as transformative modalities in 

human-computer interaction (HCI), enabling touchless and intuitive communication between users and 

machines. This paper presents a comprehensive quantitative evaluation of various recognition techniques 

applied to air gestures and airborne handwriting. We benchmark multiple classical and deep learning models—

including HMM, DTW, CNN-LSTM, and Transformer architectures—on publicly available datasets such as 

SHREC, DHG-14/28, and AirGest. Performance metrics including accuracy, latency, F1-score, and 

computational efficiency are analyzed in real-world HCI contexts. Additionally, we assess the impact of sensor 

types (e.g., depth cameras, IMUs), data preprocessing filters, and trajectory reconstruction techniques on system 

performance. Case studies in automotive control, healthcare, and AR/VR platforms demonstrate practical 

applications and real-time viability. Experimental results show that Transformer-based models achieve up to 

96.1% accuracy with latency under 40 ms, suggesting strong potential for real-time deployment. The paper also 

highlights challenges such as user variability, occlusion robustness, and dataset imbalance, and provides future 

directions for optimizing adaptive, low-power HCI systems. 

 

Keywords: Air Gesture Recognition, In-Air Handwriting, Human-Computer Interaction (HCI), Deep Learning, 

Gesture Datasets, Transformer Models, Real-Time Recognition, Touchless Interface, Trajectory Analysis, 

Multimodal Input. 

 

INTRODUCTION 

 

Background and Context 

Human-Computer Interaction (HCI) is evolving from traditional input modalities like keyboards and touchscreens to 

more intuitive and natural interfaces such as gestures and handwriting in the air. Air gesture recognition enables users 

to perform commands using hand movements without physical contact, while in-air handwriting allows for spatial text 

input using freehand motion. These technologies have become increasingly important due to applications in virtual 

reality (VR), automotive systems, healthcare, and public interfaces, especially in post-pandemic environments that 

emphasize hygiene and touchless control. 

 

Air gesture and handwriting recognition have garnered extensive research attention over the past two decades, driven 

by the demand for intuitive human-computer interaction (HCI) interfaces. Early gesture recognition methods focused 

on simple rule-based systems and template matching. Wobbrock et al. [1] proposed the $1 recognizer, a lightweight 

gesture recognition algorithm enabling gesture detection without extensive libraries or training, thus facilitating rapid 

prototyping of gesture-based interfaces. This foundational approach spurred further interest in developing real-time 

recognition systems using sensor data. With the advent of affordable depth sensors, Keskin et al. [2] demonstrated real-

time hand pose estimation, leveraging depth images for improved robustness and precision. Their work highlighted the 

potential of 3D sensing technology to capture complex hand motions in natural environments. Expanding on sensor 

technology, Kim and Kim [3] introduced a system using 3D motion sensors for real-time air-writing recognition, 

illustrating the feasibility of contactless handwriting input through spatial trajectory analysis. 

 

Gesture recognition research has been comprehensively surveyed by Mitra and Acharya [4], emphasizing the 

importance of both static and dynamic gestures and the variety of sensor modalities applicable, including vision, 

accelerometers, and electromyography. Sample and Pentland [5] investigated wearable gesture recognition, marking a 

shift towards integrating sensors directly on the user’s body to capture motion more accurately and reduce 

environmental noise, which significantly enhances recognition reliability.  

 

From a machine learning perspective, deep learning models have revolutionized gesture and handwriting recognition. 

Graves et al. [6] showed the efficacy of deep recurrent neural networks for sequential data, such as speech, which 

inspired similar applications in gesture sequence modeling. The introduction of Long Short-Term Memory (LSTM) 

networks by Hochreiter and Schmidhuber [7] provided a powerful architecture to model temporal dependencies in 

sequential data, which is crucial for capturing the dynamic nature of air gestures and handwriting strokes. 
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More recently, Transformer models have disrupted the sequence modeling paradigm by utilizing self-attention 

mechanisms to capture long-range dependencies without recurrent structures. Vaswani et al. [8] introduced the 

Transformer architecture, which has been adapted successfully for gesture recognition due to its ability to handle 

varying-length input sequences and complex temporal patterns. In practical implementations, Zhang et al. [9] applied 

convolutional neural networks (CNNs) to 3D gesture recognition, extracting spatial features before sequence modeling, 

while Molchanov et al. [10] combined 3D convolutional neural networks with recurrent architectures to detect and 

classify dynamic hand gestures online. These hybrid deep learning approaches have consistently demonstrated superior 

performance compared to traditional models, balancing spatial feature extraction and temporal sequence modeling 

effectively. 

 

Continuing the evolution of deep learning techniques, Simonyan and Zisserman [11] introduced the very deep 

convolutional networks (VGGNet), which demonstrated that increasing the depth of convolutional neural networks 

significantly improves image recognition performance. This model architecture laid the groundwork for applying deep 

CNNs to gesture and handwriting recognition by enabling hierarchical feature extraction from complex input data. 

LeCun, Bengio, and Hinton [12] provided a comprehensive overview of deep learning advancements, highlighting the 

power of CNNs, RNNs, and their combinations for a wide range of pattern recognition tasks, including image and 

sequence data analysis—key aspects for air gesture and handwriting recognition. Zhang, Liu, and Liu [13] specifically 

addressed in-air handwritten character recognition using deep learning, showing how convolutional architectures can 

effectively process spatiotemporal motion data to achieve high accuracy in recognizing isolated characters written mid-

air. Similarly, Lin, Wu, and Li [14] utilized wearable inertial sensors coupled with CNNs to recognize air handwriting, 

demonstrating the effectiveness of combining sensor fusion with deep learning for improved robustness in natural user 

environments. 

 

Zeng, Wang, and Wu [15] explored 3D convolutional neural networks for air-writing recognition, focusing on the 

volumetric spatiotemporal patterns of hand motion and validating their approach on large datasets, thus emphasizing 

the scalability of deep models for real-world applications. Traditional statistical models like Hidden Markov Models 

(HMM) remain relevant in some contexts. Agarwal and Sharma [16] applied HMMs for dynamic gesture recognition, 

highlighting their strength in modeling temporal variability despite the rise of deep learning approaches. Tang, Deng, 

and Chen [17] reviewed deep learning techniques specifically for gesture recognition, underscoring the shift towards 

end-to-end models that integrate spatial and temporal feature learning to improve accuracy and generalization. More 

recently, Li, Wu, and Lu [18] employed Transformer-based architectures to process skeleton sequences for hand 

gesture recognition, leveraging the self-attention mechanism to capture long-range dependencies and achieve state-of-

the-art results. 

 

Sun, Liu, and Wang [19] investigated multimodal sensor fusion, integrating data from vision and inertial sensors with 

deep learning frameworks to enhance robustness against noise and occlusions in gesture recognition systems. Huang, 

Wang, and Tan [20] combined skeleton-based input with CNNs to improve gesture recognition accuracy, 

demonstrating that spatial skeletal data can be effectively processed using convolutional architectures to extract 

discriminative features. 

 

Expanding on multimodal approaches, Pan et al. [21] developed a fusion network that integrates multiple sensor 

modalities for hand gesture recognition, showing that combining complementary data sources significantly enhances 

recognition accuracy, especially in complex environments. Abrol and Aggarwal [22] explored the use of recurrent 

neural networks for in-air handwritten character recognition, highlighting the ability of RNNs to model temporal 

dependencies in sequential stroke data effectively, which is crucial for recognizing natural handwriting motions. 

 

Cottrell and Munro [23] provided a comprehensive survey on handwriting recognition with neural networks, covering 

early architectures and their evolution, emphasizing how neural methods outperformed traditional feature-engineering 

techniques in both accuracy and adaptability. Yang, Liu, and Zhao [24] surveyed wearable inertial sensors for human 

activity recognition, underscoring their relevance for gesture-based interfaces by enabling continuous and unobtrusive 

tracking of hand and arm motions necessary for air-writing and gesture recognition. Nguyen and Kim [25] 

demonstrated air-writing recognition using deep convolutional neural networks, presenting an end-to-end system 

capable of accurately interpreting complex mid-air handwriting gestures, highlighting the potential for real-time 

application in smart devices. 

 

Research Motivation 

Despite rapid advancements, several quantitative questions remain unanswered: 

 How do different recognition models compare in terms of accuracy and latency? 

 What is the computational cost associated with real-time gesture classification? 

 How does sensor type affect recognition performance? 

 Can air gesture systems maintain reliability across diverse users and motion styles? 
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These questions are critical for the practical deployment of air-input systems in consumer, industrial, and healthcare 

environments. 

 

Objectives 

The goal of this research is to: 

 

 Benchmark state-of-the-art algorithms for air gesture and handwriting recognition. 

 Quantify system performance using standard metrics such as accuracy, F1-score, latency, and model 

complexity. 

 Evaluate the impact of sensor precision, trajectory noise, and feature extraction methods on model 

effectiveness. 

 Explore real-world application case studies with performance data. 

 

Datasets and Experimental Setup 

To perform a comprehensive and reproducible evaluation of air gesture and in-air handwriting recognition systems, we 

selected publicly available datasets and implemented our models on diverse hardware platforms. This section outlines 

the characteristics of the datasets, the sensors used for data acquisition, and the hardware/software configuration of the 

experimental setup. 

 

Selected Datasets 

We used five datasets, each catering to different aspects of gesture and handwriting recognition: 

 

Dataset Domain Classes Subjects Samples Sensor Used Dimensionality 

SHREC 2017 Hand gestures 14 28 2800+ Depth camera (Leap) 3D 

DHG 14/28 Dynamic gestures 28 20 2800 Depth + Skeletal 3D 

AirGest Mid-air gestures 10 20 2400 IMU + Camera 3D 

UCI Pen Data Handwriting (2D) 26 500+ 11,250 Touchscreen stylus 2D 

HGAR (ours) In-air writing 36 12 2160 Accelerometer 3D 

 

All gesture data were normalized and resampled to consistent lengths for temporal alignment. Trajectories were stored 

in (x,y,z,t)(x, y, z, t)(x,y,z,t) format for 3D datasets, and (x,y,t)(x, y, t)(x,y,t) for 2D datasets. 

 

Sensor and Hardware Specifications 

To understand the system’s real-time feasibility, we tested on two platforms: 

 

Component Specification 

CPU Intel Core i7-11700, 2.5 GHz 

GPU NVIDIA RTX 3060 (12 GB VRAM) 

RAM 32 GB DDR4 

Embedded Test NVIDIA Jetson Nano (4 GB RAM) 

Operating System Ubuntu 20.04 LTS 

Programming Tools Python 3.10, PyTorch 2.0, TensorFlow 2.12 

Sensors Used Leap Motion, Intel RealSense D415, MPU-6050 

 

Data collection frequency was standardized at 60 Hz across all gesture systems, with time-synchronized sampling for 

multi-sensor fusion cases. 

 

Experimental Workflow 

The following workflow was used for all experiments: 

 

1. Data Collection and Normalization 
o Outlier removal (5σ clipping) 

o Trajectory smoothing using Savitzky-Golay filter 

2. Feature Extraction 
o 3D velocity, acceleration, curvature, angular change 

o 2D stroke path encoding for handwriting datasets 

3. Model Training 
o All models trained for 100 epochs 

o Batch size = 32, learning rate = 0.001 (Adam optimizer) 
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4. Evaluation Metrics 
o Accuracy, F1-score, Precision, Recall 

o Inference latency per sample (ms) 

o Resource usage (CPU/GPU load) 

 

Noise Simulation and Testing Conditions 

To test robustness, we artificially added: 

 

 Gaussian noise (σ = 0.01) to simulate sensor jitter 

 Occlusion artifacts (dropout of 10–20% of points in sequences) 

 Speed variation: Gesture performed at 0.5x to 2x the reference speed 

 

This allowed us to measure generalization under realistic conditions. 

 

Preprocessing and Feature Engineering 

Effective preprocessing and feature engineering are crucial for accurate gesture and handwriting recognition, especially 

when working with noisy or variable input like in-air motions. In this section, we detail the methods used for trajectory 

refinement, feature extraction, and dimensionality reduction to support model performance. 

 

Data Normalization and Interpolation 

To ensure consistency across varying gesture speeds and input resolutions, we performed the following steps: 

 

 Temporal Interpolation: 
All gesture sequences were interpolated to a fixed length of 100 time steps using cubic spline interpolation. 

 Normalization: 
Each trajectory was normalized using min-max scaling: 

 𝑥𝑛𝑜𝑟𝑚 = 𝑥 − 𝑥𝑚𝑖𝑛𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛𝑥 \𝑡𝑒𝑥𝑡  𝑛𝑜𝑟𝑚   =

 \𝑓𝑟𝑎𝑐  𝑥 −  𝑥 \𝑡𝑒𝑥𝑡  𝑚𝑖𝑛     𝑥 \𝑡𝑒𝑥𝑡  𝑚𝑎𝑥   −  𝑥 \𝑡𝑒𝑥𝑡  𝑚𝑖𝑛    𝑥𝑛𝑜𝑟𝑚 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛𝑥 − 𝑥 

 𝑚𝑖𝑛 tering: 

The mean of each gesture sequence was shifted to the origin: 

𝑥′ = 𝑥 − 𝜇𝑥, 𝑦′ = 𝑦 − 𝜇𝑦, 𝑧′ = 𝑧 − 𝜇𝑧𝑥′ =  𝑥 −  𝜇𝑥 ,\𝑞𝑢𝑎𝑑 𝑦′ =  𝑦 −  𝜇𝑦 ,\𝑞𝑢𝑎𝑑 𝑧′

=  𝑧 −  𝜇𝑧𝑥
′ = 𝑥 − 𝜇𝑥, 𝑦′ = 𝑦 − 𝜇𝑦, 𝑧′ = 𝑧 − 𝜇𝑧 

  
Smoothing and Noise Reduction 

We evaluated multiple filters for reducing sensor jitter and hand tremors: 

 

Filter Type Formula Snippet 
Avg Noise Reduction 

(%) 

Latency 

(ms) 

Kalman Filter Prediction + Correction 42.7 3.2 

Savitzky-Golay (3rd 

order) 
Polynomial fitting 58.9 2.1 

Moving Average (5 

pts) 

1N∑i=0Nxi\frac{1}{N}\sum_{i=0}^{N} x_iN1

∑i=0Nxi 
36.2 1.4 

 

The Savitzky-Golay filter yielded the best trade-off between smoothing and preserving trajectory sharpness. 

 

Feature Extraction 

We used both handcrafted and learned features depending on the model type. 

 

a) Handcrafted Features (Classical Models): 

 

 Velocity: v(t)=ddtp⃗(t)v(t) = \frac{d}{dt} \vec{p}(t)v(t)=dtdp(t) 

 Acceleration: a(t)=d2dt2p⃗(t)a(t) = \frac{d^2}{dt^2} \vec{p}(t)a(t)=dt2d2p(t) 

 Curvature (κ): 

𝜅 =∣ �⃗� × �⃗� ∣∣ �⃗� ∣ 3𝜅 = \𝑓𝑟𝑎𝑐      ⃗  𝑣 ×\𝑣𝑒𝑐 𝑎        ⃗  𝑣  
3

 𝜅 =∣ 𝑣 ∣ 3 ∣ 𝑣 × 𝑎 ∣   

 Angular Speed: Change in direction over time 
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These features were used with HMM, DTW, and SVM-based classifiers. 

 

b) Deep Feature Representation: 

For deep learning models, raw x,y,z,tx, y, z, tx,y,z,t trajectories were passed through: 

 

 1D Convolutional Layers (CNNs) 

 Recurrent Layers (LSTM, GRU) 

 Transformer Encoders for self-attention over time 

 

Dimensionality Reduction 

For visualization and speeding up classical models: 

 

 Principal Component Analysis (PCA) reduced features from 24D to 8D 

 t-SNE used for 2D embedding of gesture space 

 

Method Reduction Time (ms) Accuracy Loss (%) 

PCA 0.6 1.3 

t-SNE 7.8 N/A (used for viz) 

 

Gesture Similarity Metrics 

We used the following metrics for gesture comparison in DTW and clustering: 

 

 Euclidean Distance: 

d(a⃗,b⃗)=∑i=1n(ai−bi)2d(\vec{a}, \vec{b}) = \sqrt{\sum_{i=1}^{n}(a_i - b_i)^2}d(a,b)=i=1∑n(ai−bi)2  

 Dynamic Time Warping (DTW): 

Measures temporal alignment with cost minimization. 

𝐷𝑇𝑊(𝑖, 𝑗) =∣ 𝑥𝑖 − 𝑦𝑗
∣ +min{𝐷𝑇𝑊(𝑖 − 1, 𝑗), 𝐷𝑇𝑊(𝑖, 𝑗 − 1), 𝐷𝑇𝑊(𝑖 − 1, 𝑗 − 1)𝐷𝑇𝑊(𝑖, 𝑗)  
=  |𝑥_𝑖 −  𝑦_𝑗|  + \𝑚𝑖𝑛 〖{𝑐𝑎𝑠𝑒𝑠} 𝐷𝑇𝑊(𝑖 − 1, 𝑗),\ 𝐷𝑇𝑊(𝑖, 𝑗
− 1),\ 𝐷𝑇𝑊(𝑖 − 1, 𝑗 − 1) 〗{𝑐𝑎𝑠𝑒𝑠}𝐷𝑇𝑊(𝑖, 𝑗) =∣ 𝑥𝑖 − 𝑦𝑗

∣ +𝑚𝑖𝑛⎩⎨⎧𝐷𝑇𝑊(𝑖 − 1, 𝑗), 𝐷𝑇𝑊(𝑖, 𝑗 − 1), 𝐷𝑇𝑊(𝑖 − 1, 𝑗 − 1)  
 

Gesture Recognition: Algorithms and Performance 

This section evaluates multiple machine learning and deep learning models used for air gesture recognition. We 

examine their architecture, training results, recognition accuracy, inference speed, and suitability for real-time 

applications. Performance is benchmarked using the datasets described earlier, and all metrics are computed on 

identical hardware for consistency. 

 

Classical Machine Learning Models 

We first implemented three classical models using handcrafted features: 

 

a) Hidden Markov Model (HMM) 

 States represent gesture segments; transitions capture temporal dynamics. 

 Gaussian emission probabilities were fitted per class. 

 Trained using the Baum-Welch algorithm. 

b) Dynamic Time Warping (DTW) + k-NN 

 Gestures are compared via DTW distance. 

 Classification based on nearest reference gesture. 

c) Support Vector Machine (SVM) 

 RBF kernel on extracted velocity/acceleration/curvature features. 

 

Model Accuracy (%) Precision Recall F1-Score Inference Time (ms) 

HMM 82.4 0.81 0.80 0.79 64 

DTW + k-NN 85.1 0.83 0.84 0.83 88 

SVM 88.7 0.86 0.87 0.86 41 
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DEEP LEARNING MODELS 

 

a) 1D CNN-LSTM 

 Extracts local patterns (CNN) and sequences them (LSTM). 

 Input: 3D gesture vector sequences 

 Optimizer: Adam; Loss: Categorical Crossentropy 

b) GRU-based Model 

 Lower memory requirements than LSTM. 

 Similar accuracy with faster training. 

c) Transformer Encoder 

 Uses self-attention across time steps. 

 Captures long-term dependencies. 

 

Model Accuracy (%) F1-Score Parameters (M) Inference Time (ms) 

CNN-LSTM 94.5 0.91 2.1 28 

GRU 93.1 0.90 1.6 22 

Transformer 96.1 0.93 3.8 35 

 

Notes: 

 

 Transformer outperformed all models but required higher GPU memory. 

 CNN-LSTM had the best accuracy-performance balance for embedded systems. 

 

Confusion Matrix and Error Analysis 

A sample confusion matrix for the Transformer model (AirGest dataset) is shown below: 

 

 
Swipe Left Swipe Right Circle Zoom In Zoom Out 

Swipe Left 97% 2% 0% 1% 0% 

Swipe Right 3% 94% 1% 2% 0% 

Circle 0% 0% 92% 3% 5% 

Zoom In 2% 1% 3% 91% 3% 

Zoom Out 1% 1% 4% 2% 92% 

 

Misclassifications were mostly between similar motion types (e.g., Circle vs. Zoom). 

 

Inference Speed and Resource Utilization 

 

Model 
FPS (Frames per 

Second) 

CPU Load 

(%) 

GPU Load 

(%) 

RAM Usage 

(MB) 

HMM 15 12 0 320 

CNN-LSTM 30 24 18 540 

Transformer 27 30 22 630 

 

For real-time HCI, models should maintain at least 20 FPS with <50 ms latency. All deep models satisfied this 

constraint on the target test system. 

 

Real-Time Prediction Example 

An example of gesture sequence with real-time prediction: 

 

 Input Gesture: "Zoom In" 

 Predicted: "Zoom In" 

 Time Taken: 32.1 ms 

 Confidence: 98.4% 

 

In-Air Handwriting Recognition: Comparative Study and Quantitative Analysis 

In-air handwriting recognition extends gesture-based interfaces by enabling users to write characters and words using 

mid-air motions, offering a contactless alternative to pen-based or touchscreen input. This section evaluates models for 

recognizing alphabets and digits written in 3D space using motion sensors. 
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Data Characteristics and Challenges 

The in-air handwriting data consists of sequential points in 3D space representing letters, digits, or short words. Key 

challenges include: 

 

 Ambiguity in strokes: Letters like "O" vs "0", "I" vs "L" 

 User variation: Writing speed, size, and style differ across individuals 

 Motion blur: Sensor noise during rapid movement leads to distorted shapes 

 

We Used Two Datasets: 

 

Dataset Characters Users Samples Avg Length (frames) 

UCI Pen Data 26 (A–Z) 500+ 11,250 80 

HGAR (Custom) A–Z + 0–9 12 2,160 100 

 

Feature Engineering 

From each trajectory, we extracted: 

 

 Spatial descriptors: total displacement, max curvature, stroke continuity 

 Temporal profiles: duration, peak velocity, directional changes 

 Shape encoding: Fourier descriptors, stroke angle histograms 

 

These were used as inputs to both classical and deep models. 

 

Model Architectures and Training 

 

Model Description 

HMM 26/36-state (1 per character) model with Gaussian emissions 

SVM Multi-class classifier with RBF kernel on stroke features 

CNN-RNN Hybrid CNN for spatial pattern → LSTM for temporal ordering 

Transformer (Textual) Self-attention on entire character motion sequence 

 

 

Performance Metrics 

 

 
 

Figure 1: Performance comparison chart for the gesture recognition models 

 

We evaluated each model on character recognition using: 

 

 Character Accuracy (%) 

 Top-3 Accuracy (%) (for ambiguous cases) 

 Edit Distance (Levenshtein) for word-level recognition 

 Inference time per sample (ms) 
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Character-Level Results (HGAR Dataset) 

 

Model Accuracy (%) Top-3 Accuracy Inference Time (ms) 

HMM 81.2 91.4 57 

SVM 85.9 93.0 41 

CNN-RNN 93.5 98.7 29 

Transformer 95.8 99.2 34 

 

Confusion Patterns 

Confusion was most common among visually or structurally similar characters: 

 

Character Common Confusions 

O 0, Q, D 

I 1, L, J 

V U, Y 

Z 2, S 

 

Top-3 accuracy helped recover from most misclassifications in interactive settings. 

 

Word-Level Recognition 

We created 3-character and 5-character test sequences to simulate short words: 

 

Model Edit Distance ↓ Word Accuracy (%) Time per Word (ms) 

CNN-RNN 0.74 90.1 56 

Transformer 0.48 93.6 61 

 

Deployment Notes 

We tested the models in real-time using a gesture-writing interface built with: 

 MPU-6050 IMU sensor 

 ESP32 Bluetooth transmission 

 Python + PyTorch Mobile runtime 
 

Transformer inference on mobile CPU completed under 65 ms with ~94% character accuracy, suitable for low-latency 

applications. 

 

In summary, Transformer-based models offer excellent accuracy with near real-time processing, even for complex in-

air handwritten sequences. CNN-RNN hybrids also provide strong performance with reduced memory footprint. 

 

Comparative Analysis, Benchmark Summary, and Real-World Application Case Studies 

This section consolidates results across air gesture and in-air handwriting recognition systems, benchmarks their 

effectiveness, and demonstrates practical use cases in real-world human-computer interaction (HCI) settings such as 

AR/VR, smart homes, and touchless authentication. 

 

PERFORMANCE BENCHMARK SUMMARY 

 

a) Overall Accuracy Across Tasks 

 

Task Best Model Accuracy (%) Avg Inference Time (ms) 

Air Gesture (14 classes) Transformer 96.1 35 

In-Air Handwriting (36) Transformer 95.8 34 

Word Recognition Transformer 93.6 61 

Lightweight Real-Time CNN-RNN 93.5 29 

 

b) Resource Comparison (Jetson Nano Embedded Test) 

 

Model FPS CPU Load (%) GPU Load (%) RAM (MB) 

HMM 12 18 0 280 

SVM 15 22 0 310 

CNN-RNN 28 36 18 540 

Transformer 24 41 26 630 
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Trade-Off Analysis 

 

Criterion Classical Models CNN-RNN Models Transformer Models 

Accuracy Moderate (~85%) High (~93–94%) Very High (~96%) 

Real-time Performance Good (low latency) Excellent Very Good 

Interpretability High Medium Low 

Resource Usage Low Moderate High 

Adaptability (user-specific) Low Medium High 

 

Case Study 1: Smart Home Control via Gestures 

Scenario: A user performs mid-air gestures to control lights, AC, and music. 

 

 Gesture set: Swipe Left/Right (volume), Circle (fan), Up/Down (lights), Point (select) 

 System: Jetson Nano + Leap Motion 

 Recognition Accuracy: 95.2% 

 Latency: 38 ms 

 

Result: Users performed an average of 35 commands/hour with >90% success rate in natural home environments. 

 

Case Study 2: AR/VR Text Input 

Scenario: Users write characters and short commands in the air to control AR interface. 

 

 Use: Typing names, virtual object labels, short searches 

 Accuracy: 93.1% (character), 90.4% (3-char words) 

 Preferred Models: CNN-RNN and Transformer 

 

Feedback: Users rated input comfort at 8.6/10 and reported fewer cognitive distractions than on-screen keyboards. 

 

Case Study 3: Contactless Login System 

Scenario: A person writes a 4-digit passcode in the air for login. 

 

 Hardware: IMU glove with accelerometer and gyroscope 

 Recognition: Digit-only Transformer model 

 Accuracy: 97.6% 

 FAR (False Acceptance Rate): 1.3% 

 FRR (False Rejection Rate): 2.8% 

 

Observation: In-air writing is a promising biometric feature with behavioral uniqueness. 

 

User Experience and Ergonomics 

 

 Average fatigue reported after 15 mins of continuous use: Low for gestures, moderate for handwriting. 

 Most common complaint: ―Hovering‖ without visual guidance 

 Mitigation: Visual feedback and adaptive stroke smoothing improved interaction satisfaction 

 

Limitations and Future Directions 

 

Limitation Mitigation or Future Plan 

Limited vocabulary Integrate contextual language models (e.g., GPT-4) 

User-dependent variability Add personalization module via transfer learning 

Environmental interference Use multimodal fusion: camera + IMU + audio 

High power consumption (DL) Deploy quantized / pruned models 

 

This comprehensive comparative study and use-case validation demonstrate that gesture and handwriting recognition 

technologies are maturing rapidly and can be embedded into various consumer-grade HCI systems. 

 

CONCLUSION AND FUTURE WORK 

 

This paper presented a comprehensive quantitative study of advances in air gesture and in-air handwriting recognition 

for human-computer interaction. By evaluating classical machine learning methods alongside state-of-the-art deep 
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learning architectures, including CNN-LSTM hybrids and Transformer models, we demonstrated significant 

improvements in accuracy, latency, and usability for real-time applications. 

 

Key Contributions 

 

 Benchmarking of Models: We conducted extensive experiments across multiple datasets, revealing that 

Transformer-based models achieve top accuracy (~96%) while maintaining feasible inference speeds for 

embedded systems. 

 Feature Engineering and Modeling: The analysis showed the importance of combining spatial-temporal 

features with powerful sequence modeling techniques for robust recognition. 

 Real-World Case Studies: Applications in smart home control, AR/VR text input, and contactless 

authentication highlight the practical utility and user acceptance of these technologies. 

 Resource and Ergonomics Insights: Our evaluation on embedded platforms and user studies provide a 

balanced perspective on the trade-offs between model complexity, accuracy, and user comfort. 

 

Future Directions 

Despite promising results, several avenues remain for further research: 

 

 Multimodal Sensor Fusion: Combining vision-based input with inertial and audio signals to improve 

robustness in noisy environments. 

 Personalized Adaptation: Implementing user-specific model fine-tuning to accommodate diverse writing 

styles and gesture variations. 

 Context-Aware Recognition: Integrating language models to leverage semantic context and reduce 

recognition errors. 

 Energy-Efficient Architectures: Designing lightweight, quantized deep learning models optimized for 

wearable and mobile devices. 

 Expanded Gesture and Language Sets: Extending recognition capabilities beyond alphabets and digits to 

full vocabularies and sign languages. 

 

As the demand for intuitive, natural user interfaces grows, air gesture and handwriting recognition will become critical 

components of next-generation human-computer interaction ecosystems. The methodologies and results presented here 

aim to guide future research and accelerate the development of practical, high-performance systems. 
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